176 lines
5.5 KiB
C++
176 lines
5.5 KiB
C++
|
|
// patched cuda.cpp for cuda13 by cloudy
|
|
|
|
#include <cuda_runtime.h>
|
|
#include <cstring>
|
|
#include <cstdlib>
|
|
#include <cstdio>
|
|
|
|
#include "cuda.hpp"
|
|
#include "uarch.hpp"
|
|
#include "pci.hpp"
|
|
#include "gpufetch_helper_cuda.hpp"
|
|
#include "../common/global.hpp"
|
|
#include "../common/uarch.hpp"
|
|
|
|
bool print_gpu_cuda(struct gpu_info* gpu) {
|
|
char* cc = get_str_cc(gpu->arch);
|
|
printf("%s (Compute Capability %s)\n", gpu->name, cc);
|
|
free(cc);
|
|
return true;
|
|
}
|
|
|
|
struct cache* get_cache_info(cudaDeviceProp prop) {
|
|
struct cache* cach = (struct cache*) emalloc(sizeof(struct cache));
|
|
cach->L2 = (struct cach*) emalloc(sizeof(struct cach));
|
|
cach->L2->size = prop.l2CacheSize;
|
|
cach->L2->num_caches = 1;
|
|
cach->L2->exists = true;
|
|
return cach;
|
|
}
|
|
|
|
int get_tensor_cores(struct uarch* arch, int sm, int major) {
|
|
if(major == 7) {
|
|
if (is_chip_TU116(arch))
|
|
return 0;
|
|
return sm * 8;
|
|
}
|
|
else if(major == 8) return sm * 4;
|
|
else return 0;
|
|
}
|
|
|
|
struct topology_c* get_topology_info(struct uarch* arch, cudaDeviceProp prop) {
|
|
struct topology_c* topo = (struct topology_c*) emalloc(sizeof(struct topology_c));
|
|
topo->streaming_mp = prop.multiProcessorCount;
|
|
topo->cores_per_mp = _ConvertSMVer2Cores(prop.major, prop.minor);
|
|
topo->cuda_cores = topo->streaming_mp * topo->cores_per_mp;
|
|
topo->tensor_cores = get_tensor_cores(arch, topo->streaming_mp, prop.major);
|
|
return topo;
|
|
}
|
|
|
|
int32_t guess_clock_multipilier(struct gpu_info* gpu, struct memory* mem) {
|
|
int32_t clk_mul = 1;
|
|
int32_t clk8 = abs((mem->freq/8) - gpu->freq);
|
|
int32_t clk4 = abs((mem->freq/4) - gpu->freq);
|
|
int32_t clk2 = abs((mem->freq/2) - gpu->freq);
|
|
int32_t clk1 = abs((mem->freq/1) - gpu->freq);
|
|
int32_t min = mem->freq;
|
|
if(clkm_possible_for_uarch(8, gpu->arch) && min > clk8) { clk_mul = 8; min = clk8; }
|
|
if(clkm_possible_for_uarch(4, gpu->arch) && min > clk4) { clk_mul = 4; min = clk4; }
|
|
if(clkm_possible_for_uarch(2, gpu->arch) && min > clk2) { clk_mul = 2; min = clk2; }
|
|
if(clkm_possible_for_uarch(1, gpu->arch) && min > clk1) { clk_mul = 1; min = clk1; }
|
|
return clk_mul;
|
|
}
|
|
|
|
struct memory* get_memory_info(struct gpu_info* gpu, cudaDeviceProp prop) {
|
|
struct memory* mem = (struct memory*) emalloc(sizeof(struct memory));
|
|
int val = 0;
|
|
|
|
mem->size_bytes = (unsigned long long) prop.totalGlobalMem;
|
|
|
|
if (cudaDeviceGetAttribute(&val, cudaDevAttrMemoryClockRate, gpu->idx) == cudaSuccess) {
|
|
if (val > 1000000)
|
|
mem->freq = (float)val / 1000000.0f;
|
|
else
|
|
mem->freq = (float)val * 0.001f;
|
|
} else {
|
|
mem->freq = 0.0f;
|
|
}
|
|
|
|
mem->bus_width = prop.memoryBusWidth;
|
|
mem->clk_mul = guess_clock_multipilier(gpu, mem);
|
|
mem->type = guess_memtype_from_cmul_and_uarch(mem->clk_mul, gpu->arch);
|
|
|
|
if (mem->clk_mul > 0)
|
|
mem->freq = mem->freq / mem->clk_mul;
|
|
|
|
return mem;
|
|
}
|
|
|
|
int64_t get_peak_performance_cuda(struct gpu_info* gpu) {
|
|
return gpu->freq * 1000000 * gpu->topo_c->cuda_cores * 2;
|
|
}
|
|
|
|
int64_t get_peak_performance_tcu(cudaDeviceProp prop, struct gpu_info* gpu) {
|
|
if(prop.major == 7) return gpu->freq * 1000000 * 4 * 4 * 4 * 2 * gpu->topo_c->tensor_cores;
|
|
else if(prop.major == 8) return gpu->freq * 1000000 * 8 * 4 * 8 * 2 * gpu->topo_c->tensor_cores;
|
|
else return 0;
|
|
}
|
|
|
|
struct gpu_info* get_gpu_info_cuda(struct pci_dev *devices, int gpu_idx) {
|
|
struct gpu_info* gpu = (struct gpu_info*) emalloc(sizeof(struct gpu_info));
|
|
gpu->pci = NULL;
|
|
gpu->idx = gpu_idx;
|
|
|
|
if(gpu->idx < 0) {
|
|
printErr("GPU index must be equal or greater than zero");
|
|
return NULL;
|
|
}
|
|
|
|
if(gpu_idx == 0) {
|
|
printf("%s", CUDA_DRIVER_START_WARNING);
|
|
fflush(stdout);
|
|
}
|
|
|
|
int num_gpus = -1;
|
|
cudaError_t err = cudaGetDeviceCount(&num_gpus);
|
|
|
|
if(gpu_idx == 0) {
|
|
printf("\r%*c\r", (int) strlen(CUDA_DRIVER_START_WARNING), ' ');
|
|
fflush(stdout);
|
|
}
|
|
|
|
if(err != cudaSuccess) {
|
|
printErr("%s: %s", cudaGetErrorName(err), cudaGetErrorString(err));
|
|
return NULL;
|
|
}
|
|
|
|
if(num_gpus <= 0) {
|
|
printErr("No CUDA capable devices found!");
|
|
return NULL;
|
|
}
|
|
|
|
if(gpu->idx+1 > num_gpus) {
|
|
return NULL;
|
|
}
|
|
|
|
cudaDeviceProp deviceProp;
|
|
if ((err = cudaGetDeviceProperties(&deviceProp, gpu->idx)) != cudaSuccess) {
|
|
printErr("%s: %s", cudaGetErrorName(err), cudaGetErrorString(err));
|
|
return NULL;
|
|
}
|
|
|
|
int core_clk = 0;
|
|
if (cudaDeviceGetAttribute(&core_clk, cudaDevAttrClockRate, gpu->idx) == cudaSuccess) {
|
|
if (core_clk > 1000000)
|
|
gpu->freq = core_clk / 1000000.0f;
|
|
else
|
|
gpu->freq = core_clk * 0.001f;
|
|
} else {
|
|
gpu->freq = 0.0f;
|
|
}
|
|
|
|
gpu->vendor = GPU_VENDOR_NVIDIA;
|
|
gpu->name = (char *) emalloc(strlen(deviceProp.name) + 1);
|
|
strcpy(gpu->name, deviceProp.name);
|
|
|
|
if((gpu->pci = get_pci_from_pciutils(devices, PCI_VENDOR_ID_NVIDIA, gpu_idx)) == NULL) {
|
|
printErr("Unable to find a valid device for vendor id 0x%.4X using pciutils", PCI_VENDOR_ID_NVIDIA);
|
|
return NULL;
|
|
}
|
|
|
|
gpu->arch = get_uarch_from_cuda(gpu);
|
|
gpu->cach = get_cache_info(deviceProp);
|
|
gpu->mem = get_memory_info(gpu, deviceProp);
|
|
gpu->topo_c = get_topology_info(gpu->arch, deviceProp);
|
|
gpu->peak_performance = get_peak_performance_cuda(gpu);
|
|
gpu->peak_performance_tcu = get_peak_performance_tcu(deviceProp, gpu);
|
|
|
|
return gpu;
|
|
}
|
|
|
|
char* get_str_sm(struct gpu_info* gpu) { return get_str_generic(gpu->topo_c->streaming_mp); }
|
|
char* get_str_cores_sm(struct gpu_info* gpu) { return get_str_generic(gpu->topo_c->cores_per_mp); }
|
|
char* get_str_cuda_cores(struct gpu_info* gpu) { return get_str_generic(gpu->topo_c->cuda_cores); }
|
|
char* get_str_tensor_cores(struct gpu_info* gpu) { return get_str_generic(gpu->topo_c->tensor_cores); }
|