#include #include #include #include #include "cuda.hpp" #include "uarch.hpp" #include "gpufetch_helper_cuda.hpp" #include "../common/pci.hpp" #include "../common/global.hpp" #include "../common/uarch.hpp" bool print_gpu_cuda(struct gpu_info* gpu) { char* cc = get_str_cc(gpu->arch); printf("%s (Compute Capability %s)\n", gpu->name, cc); free(cc); return true; } struct cache* get_cache_info(cudaDeviceProp prop) { struct cache* cach = (struct cache*) emalloc(sizeof(struct cache)); cach->L2 = (struct cach*) emalloc(sizeof(struct cach)); cach->L2->size = prop.l2CacheSize; cach->L2->num_caches = 1; cach->L2->exists = true; return cach; } int get_tensor_cores(struct uarch* arch, int sm, int major) { if(major == 7) { // TU116 does not have tensor cores! // https://www.anandtech.com/show/13973/nvidia-gtx-1660-ti-review-feat-evga-xc-gaming/2 if(arch->chip == CHIP_TU116 || arch->chip == CHIP_TU116BM || arch->chip == CHIP_TU116GL || arch->chip == CHIP_TU116M) { return 0; } return sm * 8; } else if(major == 8) return sm * 4; else return 0; } struct topology_c* get_topology_info(struct uarch* arch, cudaDeviceProp prop) { struct topology_c* topo = (struct topology_c*) emalloc(sizeof(struct topology_c)); topo->streaming_mp = prop.multiProcessorCount; topo->cores_per_mp = _ConvertSMVer2Cores(prop.major, prop.minor); topo->cuda_cores = topo->streaming_mp * topo->cores_per_mp; topo->tensor_cores = get_tensor_cores(arch, topo->streaming_mp, prop.major); return topo; } int32_t guess_clock_multipilier(struct gpu_info* gpu, struct memory* mem) { // Guess clock multiplier int32_t clk_mul = 1; int32_t clk8 = abs((mem->freq/8) - gpu->freq); int32_t clk4 = abs((mem->freq/4) - gpu->freq); int32_t clk2 = abs((mem->freq/2) - gpu->freq); int32_t clk1 = abs((mem->freq/1) - gpu->freq); int32_t min = mem->freq; if(clkm_possible_for_uarch(8, gpu->arch) && min > clk8) { clk_mul = 8; min = clk8; } if(clkm_possible_for_uarch(4, gpu->arch) && min > clk4) { clk_mul = 4; min = clk4; } if(clkm_possible_for_uarch(2, gpu->arch) && min > clk2) { clk_mul = 2; min = clk2; } if(clkm_possible_for_uarch(1, gpu->arch) && min > clk1) { clk_mul = 1; min = clk1; } return clk_mul; } struct memory* get_memory_info(struct gpu_info* gpu, cudaDeviceProp prop) { struct memory* mem = (struct memory*) emalloc(sizeof(struct memory)); mem->size_bytes = (unsigned long long) prop.totalGlobalMem; mem->freq = prop.memoryClockRate * 0.001f; mem->bus_width = prop.memoryBusWidth; mem->clk_mul = guess_clock_multipilier(gpu, mem); mem->type = guess_memtype_from_cmul_and_uarch(mem->clk_mul, gpu->arch); // Fix frequency returned from CUDA to show real frequency mem->freq = mem->freq / mem->clk_mul; return mem; } // Compute peak performance when using CUDA cores int64_t get_peak_performance_cuda(struct gpu_info* gpu) { return gpu->freq * 1000000 * gpu->topo_c->cuda_cores * 2; } // Compute peak performance when using tensor cores int64_t get_peak_performance_tcu(cudaDeviceProp prop, struct gpu_info* gpu) { // Volta / Turing tensor cores performs 4x4x4 FP16 matrix multiplication // Ampere tensor cores performs 8x4x8 FP16 matrix multiplicacion if(prop.major == 7) return gpu->freq * 1000000 * 4 * 4 * 4 * 2 * gpu->topo_c->tensor_cores; else if(prop.major == 8) return gpu->freq * 1000000 * 8 * 4 * 8 * 2 * gpu->topo_c->tensor_cores; else return 0; } struct gpu_info* get_gpu_info_cuda(struct pci_dev *devices, int gpu_idx) { struct gpu_info* gpu = (struct gpu_info*) emalloc(sizeof(struct gpu_info)); gpu->pci = NULL; gpu->idx = gpu_idx; if(gpu->idx < 0) { printErr("GPU index must be equal or greater than zero"); return NULL; } if(gpu_idx == 0) { printf("%s", CUDA_DRIVER_START_WARNING); fflush(stdout); } int num_gpus = -1; cudaError_t err = cudaSuccess; err = cudaGetDeviceCount(&num_gpus); if(gpu_idx == 0) { printf("\r%*c\r", (int) strlen(CUDA_DRIVER_START_WARNING), ' '); fflush(stdout); } if(err != cudaSuccess) { printErr("%s: %s", cudaGetErrorName(err), cudaGetErrorString(err)); return NULL; } if(num_gpus <= 0) { printErr("No CUDA capable devices found!"); return NULL; } if(gpu->idx+1 > num_gpus) { // Master is trying to query an invalid GPU return NULL; } cudaDeviceProp deviceProp; if ((err = cudaGetDeviceProperties(&deviceProp, gpu->idx)) != cudaSuccess) { printErr("%s: %s", cudaGetErrorName(err), cudaGetErrorString(err)); return NULL; } gpu->freq = deviceProp.clockRate * 1e-3f; gpu->vendor = GPU_VENDOR_NVIDIA; gpu->name = (char *) emalloc(sizeof(char) * (strlen(deviceProp.name) + 1)); strcpy(gpu->name, deviceProp.name); if((gpu->pci = get_pci_from_pciutils(devices, PCI_VENDOR_ID_NVIDIA, gpu_idx)) == NULL) { printErr("Unable to find a valid device for vendor id 0x%.4X using pciutils", PCI_VENDOR_ID_NVIDIA); return NULL; } gpu->arch = get_uarch_from_cuda(gpu); gpu->cach = get_cache_info(deviceProp); gpu->mem = get_memory_info(gpu, deviceProp); gpu->topo_c = get_topology_info(gpu->arch, deviceProp); gpu->peak_performance = get_peak_performance_cuda(gpu); gpu->peak_performance_tcu = get_peak_performance_tcu(deviceProp, gpu); return gpu; } char* get_str_sm(struct gpu_info* gpu) { return get_str_generic(gpu->topo_c->streaming_mp); } char* get_str_cores_sm(struct gpu_info* gpu) { return get_str_generic(gpu->topo_c->cores_per_mp); } char* get_str_cuda_cores(struct gpu_info* gpu) { return get_str_generic(gpu->topo_c->cuda_cores); } char* get_str_tensor_cores(struct gpu_info* gpu) { return get_str_generic(gpu->topo_c->tensor_cores); }