#include #include #include "cuda.hpp" #include "uarch.hpp" #include "../common/pci.hpp" #include "../common/global.hpp" int print_gpus_list() { cudaError_t err = cudaSuccess; int num_gpus = -1; if ((err = cudaGetDeviceCount(&num_gpus)) != cudaSuccess) { printErr("%s: %s", cudaGetErrorName(err), cudaGetErrorString(err)); return EXIT_FAILURE; } printf("CUDA GPUs available: %d\n", num_gpus); if(num_gpus > 0) { cudaDeviceProp deviceProp; int max_len = 0; for(int idx=0; idx < num_gpus; idx++) { if ((err = cudaGetDeviceProperties(&deviceProp, idx)) != cudaSuccess) { printErr("%s: %s", cudaGetErrorName(err), cudaGetErrorString(err)); return EXIT_FAILURE; } max_len = max(max_len, (int) strlen(deviceProp.name)); } for(int i=0; i < max_len + 32; i++) putchar('-'); putchar('\n'); for(int idx=0; idx < num_gpus; idx++) { if ((err = cudaGetDeviceProperties(&deviceProp, idx)) != cudaSuccess) { printErr("%s: %s", cudaGetErrorName(err), cudaGetErrorString(err)); return EXIT_FAILURE; } printf("GPU %d: %s (Compute Capability %d.%d)\n", idx, deviceProp.name, deviceProp.major, deviceProp.minor); } } return EXIT_SUCCESS; } struct cache* get_cache_info(cudaDeviceProp prop) { struct cache* cach = (struct cache*) emalloc(sizeof(struct cache)); cach->L2 = (struct cach*) emalloc(sizeof(struct cach)); cach->L2->size = prop.l2CacheSize; cach->L2->num_caches = 1; cach->L2->exists = true; return cach; } int get_tensor_cores(int sm, int major) { if(major == 7) return sm * 8; else if(major == 8) return sm * 4; else return 0; } struct topology* get_topology_info(cudaDeviceProp prop) { struct topology* topo = (struct topology*) emalloc(sizeof(struct topology)); topo->streaming_mp = prop.multiProcessorCount; topo->cores_per_mp = _ConvertSMVer2Cores(prop.major, prop.minor); topo->cuda_cores = topo->streaming_mp * topo->cores_per_mp; topo->tensor_cores = get_tensor_cores(topo->streaming_mp, prop.major); return topo; } int32_t guess_clock_multipilier(struct gpu_info* gpu, struct memory* mem) { // Guess clock multiplier int32_t clk_mul = 1; int32_t clk8 = abs((mem->freq/8) - gpu->freq); int32_t clk4 = abs((mem->freq/4) - gpu->freq); int32_t clk2 = abs((mem->freq/2) - gpu->freq); int32_t clk1 = abs((mem->freq/1) - gpu->freq); int32_t min = mem->freq; if(clkm_possible_for_uarch(8, gpu->arch) && min > clk8) { clk_mul = 8; min = clk8; } if(clkm_possible_for_uarch(4, gpu->arch) && min > clk4) { clk_mul = 4; min = clk4; } if(clkm_possible_for_uarch(2, gpu->arch) && min > clk2) { clk_mul = 2; min = clk2; } if(clkm_possible_for_uarch(1, gpu->arch) && min > clk1) { clk_mul = 1; min = clk1; } return clk_mul; } struct memory* get_memory_info(struct gpu_info* gpu, cudaDeviceProp prop) { struct memory* mem = (struct memory*) emalloc(sizeof(struct memory)); mem->size_bytes = (unsigned long long) prop.totalGlobalMem; mem->freq = prop.memoryClockRate * 0.001f; mem->bus_width = prop.memoryBusWidth; mem->clk_mul = guess_clock_multipilier(gpu, mem); mem->type = guess_memtype_from_cmul_and_uarch(mem->clk_mul, gpu->arch); // Fix frequency returned from CUDA to show real frequency mem->freq = mem->freq / mem->clk_mul; return mem; } int64_t get_peak_performance(struct gpu_info* gpu) { return gpu->freq * 1000000 * gpu->topo->cuda_cores * 2; } struct gpu_info* get_gpu_info(int gpu_idx) { struct gpu_info* gpu = (struct gpu_info*) emalloc(sizeof(struct gpu_info)); gpu->pci = NULL; gpu->idx = gpu_idx; if(gpu->idx < 0) { printErr("GPU index must be equal or greater than zero"); return NULL; } printf("Waiting for CUDA driver to start..."); fflush(stdout); int num_gpus = -1; cudaError_t err = cudaSuccess; if ((err = cudaGetDeviceCount(&num_gpus)) != cudaSuccess) { printErr("%s: %s", cudaGetErrorName(err), cudaGetErrorString(err)); return NULL; } printf("\r "); if(num_gpus <= 0) { printErr("No CUDA capable devices found!"); return NULL; } if(gpu->idx+1 > num_gpus) { printErr("Requested GPU index %d in a system with %d GPUs", gpu->idx, num_gpus); return NULL; } cudaDeviceProp deviceProp; if ((err = cudaGetDeviceProperties(&deviceProp, gpu->idx)) != cudaSuccess) { printErr("%s: %s", cudaGetErrorName(err), cudaGetErrorString(err)); return NULL; } gpu->freq = deviceProp.clockRate * 1e-3f; gpu->vendor = GPU_VENDOR_NVIDIA; gpu->name = (char *) emalloc(sizeof(char) * (strlen(deviceProp.name) + 1)); strcpy(gpu->name, deviceProp.name); struct pci_dev *devices = get_pci_devices_from_pciutils(); gpu->pci = get_pci_from_pciutils(devices); gpu->arch = get_uarch_from_cuda(gpu); gpu->cach = get_cache_info(deviceProp); gpu->mem = get_memory_info(gpu, deviceProp); gpu->topo = get_topology_info(deviceProp); gpu->peak_performance = get_peak_performance(gpu); return gpu; } char* get_str_generic(int32_t data) { // Largest int is 10, +1 for possible negative, +1 for EOL uint32_t max_size = 12; char* dummy = (char *) ecalloc(max_size, sizeof(char)); snprintf(dummy, max_size, "%d", data); return dummy; } char* get_str_sm(struct gpu_info* gpu) { return get_str_generic(gpu->topo->streaming_mp); } char* get_str_cores_sm(struct gpu_info* gpu) { return get_str_generic(gpu->topo->cores_per_mp); } char* get_str_cuda_cores(struct gpu_info* gpu) { return get_str_generic(gpu->topo->cuda_cores); } char* get_str_tensor_cores(struct gpu_info* gpu) { return get_str_generic(gpu->topo->tensor_cores); }