1 Commits

Author SHA1 Message Date
Dr-Noob
47091fded5 Improve build script 2025-10-17 07:39:02 +02:00
6 changed files with 41 additions and 177 deletions

View File

@@ -101,17 +101,6 @@ char* get_str_bus_width(struct gpu_info* gpu) {
return string; return string;
} }
char* get_str_lds_size(struct gpu_info* gpu) {
// TODO: Show XX KB (XX MB Total) like in cpufetch
uint32_t size = 3+1+3+1;
assert(strlen(STRING_UNKNOWN)+1 <= size);
char* string = (char *) ecalloc(size, sizeof(char));
sprintf(string, "%d KB", gpu->mem->lds_size / 1024);
return string;
}
char* get_str_memory_clock(struct gpu_info* gpu) { char* get_str_memory_clock(struct gpu_info* gpu) {
return get_freq_as_str_mhz(gpu->mem->freq); return get_freq_as_str_mhz(gpu->mem->freq);
} }

View File

@@ -46,10 +46,6 @@ struct topology_c {
// HSA topology // HSA topology
struct topology_h { struct topology_h {
int32_t compute_units; int32_t compute_units;
int32_t num_shader_engines;
int32_t simds_per_cu;
int32_t num_xcc;
int32_t matrix_cores;
}; };
// Intel topology // Intel topology
@@ -65,7 +61,6 @@ struct memory {
int32_t bus_width; int32_t bus_width;
int32_t freq; int32_t freq;
int32_t clk_mul; // clock multiplier int32_t clk_mul; // clock multiplier
int32_t lds_size; // HSA specific for now
}; };
struct gpu_info { struct gpu_info {
@@ -93,7 +88,6 @@ char* get_str_freq(struct gpu_info* gpu);
char* get_str_memory_size(struct gpu_info* gpu); char* get_str_memory_size(struct gpu_info* gpu);
char* get_str_memory_type(struct gpu_info* gpu); char* get_str_memory_type(struct gpu_info* gpu);
char* get_str_bus_width(struct gpu_info* gpu); char* get_str_bus_width(struct gpu_info* gpu);
char* get_str_lds_size(struct gpu_info* gpu);
char* get_str_memory_clock(struct gpu_info* gpu); char* get_str_memory_clock(struct gpu_info* gpu);
char* get_str_l2(struct gpu_info* gpu); char* get_str_l2(struct gpu_info* gpu);
char* get_str_peak_performance(struct gpu_info* gpu); char* get_str_peak_performance(struct gpu_info* gpu);

View File

@@ -48,17 +48,14 @@ enum {
ATTRIBUTE_FREQUENCY, // ALL ATTRIBUTE_FREQUENCY, // ALL
ATTRIBUTE_PEAK, // ALL ATTRIBUTE_PEAK, // ALL
ATTRIBUTE_COMPUTE_UNITS, // HSA ATTRIBUTE_COMPUTE_UNITS, // HSA
ATTRIBUTE_MATRIX_CORES, // HSA
ATTRIBUTE_XCDS, // HSA
ATTRIBUTE_LDS_SIZE, // HSA
ATTRIBUTE_STREAMINGMP, // CUDA ATTRIBUTE_STREAMINGMP, // CUDA
ATTRIBUTE_CORESPERMP, // CUDA ATTRIBUTE_CORESPERMP, // CUDA
ATTRIBUTE_CUDA_CORES, // CUDA ATTRIBUTE_CUDA_CORES, // CUDA
ATTRIBUTE_TENSOR_CORES, // CUDA ATTRIBUTE_TENSOR_CORES, // CUDA
ATTRIBUTE_L2, // CUDA ATTRIBUTE_L2, // CUDA
ATTRIBUTE_MEMORY, // CUDA,HSA ATTRIBUTE_MEMORY, // CUDA
ATTRIBUTE_MEMORY_FREQ, // CUDA ATTRIBUTE_MEMORY_FREQ, // CUDA
ATTRIBUTE_BUS_WIDTH, // CUDA,HSA ATTRIBUTE_BUS_WIDTH, // CUDA
ATTRIBUTE_PEAK_TENSOR, // CUDA ATTRIBUTE_PEAK_TENSOR, // CUDA
ATTRIBUTE_EUS, // Intel ATTRIBUTE_EUS, // Intel
ATTRIBUTE_GT, // Intel ATTRIBUTE_GT, // Intel
@@ -72,9 +69,6 @@ static const AttributeField ATTRIBUTE_INFO[] = {
{ ATTRIBUTE_FREQUENCY, "Max Frequency:", "Max Freq.:" }, { ATTRIBUTE_FREQUENCY, "Max Frequency:", "Max Freq.:" },
{ ATTRIBUTE_PEAK, "Peak Performance:", "Peak Perf.:" }, { ATTRIBUTE_PEAK, "Peak Performance:", "Peak Perf.:" },
{ ATTRIBUTE_COMPUTE_UNITS, "Compute Units (CUs):", "CUs" }, { ATTRIBUTE_COMPUTE_UNITS, "Compute Units (CUs):", "CUs" },
{ ATTRIBUTE_MATRIX_CORES, "Matrix Cores:", "Matrix Cores:" },
{ ATTRIBUTE_XCDS, "XCDs:", "XCDs" },
{ ATTRIBUTE_LDS_SIZE, "LDS size:", "LDS:" },
{ ATTRIBUTE_STREAMINGMP, "SMs:", "SMs:" }, { ATTRIBUTE_STREAMINGMP, "SMs:", "SMs:" },
{ ATTRIBUTE_CORESPERMP, "Cores/SM:", "Cores/SM:" }, { ATTRIBUTE_CORESPERMP, "Cores/SM:", "Cores/SM:" },
{ ATTRIBUTE_CUDA_CORES, "CUDA Cores:", "CUDA Cores:" }, { ATTRIBUTE_CUDA_CORES, "CUDA Cores:", "CUDA Cores:" },
@@ -492,12 +486,7 @@ bool print_gpufetch_amd(struct gpu_info* gpu, STYLE s, struct color** cs, struct
char* uarch = get_str_uarch_hsa(gpu->arch); char* uarch = get_str_uarch_hsa(gpu->arch);
char* manufacturing_process = get_str_process(gpu->arch); char* manufacturing_process = get_str_process(gpu->arch);
char* cus = get_str_cu(gpu); char* cus = get_str_cu(gpu);
char* matrix_cores = get_str_matrix_cores(gpu);
char* xcds = get_str_xcds(gpu);
char* max_frequency = get_str_freq(gpu); char* max_frequency = get_str_freq(gpu);
char* bus_width = get_str_bus_width(gpu);
char* mem_size = get_str_memory_size(gpu);
char* lds_size = get_str_lds_size(gpu);
setAttribute(art, ATTRIBUTE_NAME, gpu_name); setAttribute(art, ATTRIBUTE_NAME, gpu_name);
if (gpu_chip != NULL) { if (gpu_chip != NULL) {
@@ -507,13 +496,6 @@ bool print_gpufetch_amd(struct gpu_info* gpu, STYLE s, struct color** cs, struct
setAttribute(art, ATTRIBUTE_TECHNOLOGY, manufacturing_process); setAttribute(art, ATTRIBUTE_TECHNOLOGY, manufacturing_process);
setAttribute(art, ATTRIBUTE_FREQUENCY, max_frequency); setAttribute(art, ATTRIBUTE_FREQUENCY, max_frequency);
setAttribute(art, ATTRIBUTE_COMPUTE_UNITS, cus); setAttribute(art, ATTRIBUTE_COMPUTE_UNITS, cus);
setAttribute(art, ATTRIBUTE_MATRIX_CORES, matrix_cores);
if (xcds != NULL) {
setAttribute(art, ATTRIBUTE_XCDS, xcds);
}
setAttribute(art, ATTRIBUTE_LDS_SIZE, lds_size);
setAttribute(art, ATTRIBUTE_MEMORY, mem_size);
setAttribute(art, ATTRIBUTE_BUS_WIDTH, bus_width);
bool use_short = false; bool use_short = false;
uint32_t longest_attribute = longest_attribute_length(art, use_short); uint32_t longest_attribute = longest_attribute_length(art, use_short);

View File

@@ -1,6 +1,3 @@
// patched cuda.cpp for cuda13 by cloudy
#include <cuda_runtime.h> #include <cuda_runtime.h>
#include <cstring> #include <cstring>
#include <cstdlib> #include <cstdlib>
@@ -17,20 +14,25 @@ bool print_gpu_cuda(struct gpu_info* gpu) {
char* cc = get_str_cc(gpu->arch); char* cc = get_str_cc(gpu->arch);
printf("%s (Compute Capability %s)\n", gpu->name, cc); printf("%s (Compute Capability %s)\n", gpu->name, cc);
free(cc); free(cc);
return true; return true;
} }
struct cache* get_cache_info(cudaDeviceProp prop) { struct cache* get_cache_info(cudaDeviceProp prop) {
struct cache* cach = (struct cache*) emalloc(sizeof(struct cache)); struct cache* cach = (struct cache*) emalloc(sizeof(struct cache));
cach->L2 = (struct cach*) emalloc(sizeof(struct cach)); cach->L2 = (struct cach*) emalloc(sizeof(struct cach));
cach->L2->size = prop.l2CacheSize; cach->L2->size = prop.l2CacheSize;
cach->L2->num_caches = 1; cach->L2->num_caches = 1;
cach->L2->exists = true; cach->L2->exists = true;
return cach; return cach;
} }
int get_tensor_cores(struct uarch* arch, int sm, int major) { int get_tensor_cores(struct uarch* arch, int sm, int major) {
if(major == 7) { if(major == 7) {
// TU116 does not have tensor cores!
// https://www.anandtech.com/show/13973/nvidia-gtx-1660-ti-review-feat-evga-xc-gaming/2
if (is_chip_TU116(arch)) if (is_chip_TU116(arch))
return 0; return 0;
return sm * 8; return sm * 8;
@@ -41,57 +43,57 @@ int get_tensor_cores(struct uarch* arch, int sm, int major) {
struct topology_c* get_topology_info(struct uarch* arch, cudaDeviceProp prop) { struct topology_c* get_topology_info(struct uarch* arch, cudaDeviceProp prop) {
struct topology_c* topo = (struct topology_c*) emalloc(sizeof(struct topology_c)); struct topology_c* topo = (struct topology_c*) emalloc(sizeof(struct topology_c));
topo->streaming_mp = prop.multiProcessorCount; topo->streaming_mp = prop.multiProcessorCount;
topo->cores_per_mp = _ConvertSMVer2Cores(prop.major, prop.minor); topo->cores_per_mp = _ConvertSMVer2Cores(prop.major, prop.minor);
topo->cuda_cores = topo->streaming_mp * topo->cores_per_mp; topo->cuda_cores = topo->streaming_mp * topo->cores_per_mp;
topo->tensor_cores = get_tensor_cores(arch, topo->streaming_mp, prop.major); topo->tensor_cores = get_tensor_cores(arch, topo->streaming_mp, prop.major);
return topo; return topo;
} }
int32_t guess_clock_multipilier(struct gpu_info* gpu, struct memory* mem) { int32_t guess_clock_multipilier(struct gpu_info* gpu, struct memory* mem) {
// Guess clock multiplier
int32_t clk_mul = 1; int32_t clk_mul = 1;
int32_t clk8 = abs((mem->freq/8) - gpu->freq); int32_t clk8 = abs((mem->freq/8) - gpu->freq);
int32_t clk4 = abs((mem->freq/4) - gpu->freq); int32_t clk4 = abs((mem->freq/4) - gpu->freq);
int32_t clk2 = abs((mem->freq/2) - gpu->freq); int32_t clk2 = abs((mem->freq/2) - gpu->freq);
int32_t clk1 = abs((mem->freq/1) - gpu->freq); int32_t clk1 = abs((mem->freq/1) - gpu->freq);
int32_t min = mem->freq; int32_t min = mem->freq;
if(clkm_possible_for_uarch(8, gpu->arch) && min > clk8) { clk_mul = 8; min = clk8; } if(clkm_possible_for_uarch(8, gpu->arch) && min > clk8) { clk_mul = 8; min = clk8; }
if(clkm_possible_for_uarch(4, gpu->arch) && min > clk4) { clk_mul = 4; min = clk4; } if(clkm_possible_for_uarch(4, gpu->arch) && min > clk4) { clk_mul = 4; min = clk4; }
if(clkm_possible_for_uarch(2, gpu->arch) && min > clk2) { clk_mul = 2; min = clk2; } if(clkm_possible_for_uarch(2, gpu->arch) && min > clk2) { clk_mul = 2; min = clk2; }
if(clkm_possible_for_uarch(1, gpu->arch) && min > clk1) { clk_mul = 1; min = clk1; } if(clkm_possible_for_uarch(1, gpu->arch) && min > clk1) { clk_mul = 1; min = clk1; }
return clk_mul; return clk_mul;
} }
struct memory* get_memory_info(struct gpu_info* gpu, cudaDeviceProp prop) { struct memory* get_memory_info(struct gpu_info* gpu, cudaDeviceProp prop) {
struct memory* mem = (struct memory*) emalloc(sizeof(struct memory)); struct memory* mem = (struct memory*) emalloc(sizeof(struct memory));
int val = 0;
mem->size_bytes = (unsigned long long) prop.totalGlobalMem; mem->size_bytes = (unsigned long long) prop.totalGlobalMem;
mem->freq = prop.memoryClockRate * 0.001f;
if (cudaDeviceGetAttribute(&val, cudaDevAttrMemoryClockRate, gpu->idx) == cudaSuccess) {
if (val > 1000000)
mem->freq = (float)val / 1000000.0f;
else
mem->freq = (float)val * 0.001f;
} else {
mem->freq = 0.0f;
}
mem->bus_width = prop.memoryBusWidth; mem->bus_width = prop.memoryBusWidth;
mem->clk_mul = guess_clock_multipilier(gpu, mem); mem->clk_mul = guess_clock_multipilier(gpu, mem);
mem->type = guess_memtype_from_cmul_and_uarch(mem->clk_mul, gpu->arch); mem->type = guess_memtype_from_cmul_and_uarch(mem->clk_mul, gpu->arch);
if (mem->clk_mul > 0) // Fix frequency returned from CUDA to show real frequency
mem->freq = mem->freq / mem->clk_mul; mem->freq = mem->freq / mem->clk_mul;
return mem; return mem;
} }
// Compute peak performance when using CUDA cores
int64_t get_peak_performance_cuda(struct gpu_info* gpu) { int64_t get_peak_performance_cuda(struct gpu_info* gpu) {
return gpu->freq * 1000000 * gpu->topo_c->cuda_cores * 2; return gpu->freq * 1000000 * gpu->topo_c->cuda_cores * 2;
} }
// Compute peak performance when using tensor cores
int64_t get_peak_performance_tcu(cudaDeviceProp prop, struct gpu_info* gpu) { int64_t get_peak_performance_tcu(cudaDeviceProp prop, struct gpu_info* gpu) {
// Volta / Turing tensor cores performs 4x4x4 FP16 matrix multiplication
// Ampere tensor cores performs 8x4x8 FP16 matrix multiplicacion
if(prop.major == 7) return gpu->freq * 1000000 * 4 * 4 * 4 * 2 * gpu->topo_c->tensor_cores; if(prop.major == 7) return gpu->freq * 1000000 * 4 * 4 * 4 * 2 * gpu->topo_c->tensor_cores;
else if(prop.major == 8) return gpu->freq * 1000000 * 8 * 4 * 8 * 2 * gpu->topo_c->tensor_cores; else if(prop.major == 8) return gpu->freq * 1000000 * 8 * 4 * 8 * 2 * gpu->topo_c->tensor_cores;
else return 0; else return 0;
@@ -113,7 +115,8 @@ struct gpu_info* get_gpu_info_cuda(struct pci_dev *devices, int gpu_idx) {
} }
int num_gpus = -1; int num_gpus = -1;
cudaError_t err = cudaGetDeviceCount(&num_gpus); cudaError_t err = cudaSuccess;
err = cudaGetDeviceCount(&num_gpus);
if(gpu_idx == 0) { if(gpu_idx == 0) {
printf("\r%*c\r", (int) strlen(CUDA_DRIVER_START_WARNING), ' '); printf("\r%*c\r", (int) strlen(CUDA_DRIVER_START_WARNING), ' ');
@@ -131,6 +134,7 @@ struct gpu_info* get_gpu_info_cuda(struct pci_dev *devices, int gpu_idx) {
} }
if(gpu->idx+1 > num_gpus) { if(gpu->idx+1 > num_gpus) {
// Master is trying to query an invalid GPU
return NULL; return NULL;
} }
@@ -140,25 +144,15 @@ struct gpu_info* get_gpu_info_cuda(struct pci_dev *devices, int gpu_idx) {
return NULL; return NULL;
} }
int core_clk = 0; gpu->freq = deviceProp.clockRate * 1e-3f;
if (cudaDeviceGetAttribute(&core_clk, cudaDevAttrClockRate, gpu->idx) == cudaSuccess) {
if (core_clk > 1000000)
gpu->freq = core_clk / 1000000.0f;
else
gpu->freq = core_clk * 0.001f;
} else {
gpu->freq = 0.0f;
}
gpu->vendor = GPU_VENDOR_NVIDIA; gpu->vendor = GPU_VENDOR_NVIDIA;
gpu->name = (char *) emalloc(strlen(deviceProp.name) + 1); gpu->name = (char *) emalloc(sizeof(char) * (strlen(deviceProp.name) + 1));
strcpy(gpu->name, deviceProp.name); strcpy(gpu->name, deviceProp.name);
if((gpu->pci = get_pci_from_pciutils(devices, PCI_VENDOR_ID_NVIDIA, gpu_idx)) == NULL) { if((gpu->pci = get_pci_from_pciutils(devices, PCI_VENDOR_ID_NVIDIA, gpu_idx)) == NULL) {
printErr("Unable to find a valid device for vendor id 0x%.4X using pciutils", PCI_VENDOR_ID_NVIDIA); printErr("Unable to find a valid device for vendor id 0x%.4X using pciutils", PCI_VENDOR_ID_NVIDIA);
return NULL; return NULL;
} }
gpu->arch = get_uarch_from_cuda(gpu); gpu->arch = get_uarch_from_cuda(gpu);
gpu->cach = get_cache_info(deviceProp); gpu->cach = get_cache_info(deviceProp);
gpu->mem = get_memory_info(gpu, deviceProp); gpu->mem = get_memory_info(gpu, deviceProp);
@@ -169,7 +163,19 @@ struct gpu_info* get_gpu_info_cuda(struct pci_dev *devices, int gpu_idx) {
return gpu; return gpu;
} }
char* get_str_sm(struct gpu_info* gpu) { return get_str_generic(gpu->topo_c->streaming_mp); } char* get_str_sm(struct gpu_info* gpu) {
char* get_str_cores_sm(struct gpu_info* gpu) { return get_str_generic(gpu->topo_c->cores_per_mp); } return get_str_generic(gpu->topo_c->streaming_mp);
char* get_str_cuda_cores(struct gpu_info* gpu) { return get_str_generic(gpu->topo_c->cuda_cores); } }
char* get_str_tensor_cores(struct gpu_info* gpu) { return get_str_generic(gpu->topo_c->tensor_cores); }
char* get_str_cores_sm(struct gpu_info* gpu) {
return get_str_generic(gpu->topo_c->cores_per_mp);
}
char* get_str_cuda_cores(struct gpu_info* gpu) {
return get_str_generic(gpu->topo_c->cuda_cores);
}
char* get_str_tensor_cores(struct gpu_info* gpu) {
return get_str_generic(gpu->topo_c->tensor_cores);
}

View File

@@ -22,16 +22,7 @@ struct agent_info {
char vendor_name[64]; char vendor_name[64];
char device_mkt_name[64]; char device_mkt_name[64];
uint32_t max_clock_freq; uint32_t max_clock_freq;
// Memory
uint32_t bus_width;
uint32_t lds_size;
uint64_t global_size;
// Topology
uint32_t compute_unit; uint32_t compute_unit;
uint32_t num_shader_engines;
uint32_t simds_per_cu;
uint32_t num_xcc; // Acccelerator Complex Dies (XCDs)
uint32_t matrix_cores; // Cores with WMMA/MFMA capabilities
}; };
#define RET_IF_HSA_ERR(err) { \ #define RET_IF_HSA_ERR(err) { \
@@ -49,51 +40,6 @@ struct agent_info {
} \ } \
} }
hsa_status_t memory_pool_callback(hsa_amd_memory_pool_t pool, void* data) {
struct agent_info* info = reinterpret_cast<struct agent_info *>(data);
hsa_amd_segment_t segment;
hsa_status_t err = hsa_amd_memory_pool_get_info(pool, HSA_AMD_MEMORY_POOL_INFO_SEGMENT, &segment);
RET_IF_HSA_ERR(err);
if (segment == HSA_AMD_SEGMENT_GROUP) {
// LDS memory
// We want to make sure that this memory pool is not repeated.
if (info->lds_size != 0) {
printErr("Found HSA_AMD_SEGMENT_GROUP twice!");
return HSA_STATUS_ERROR;
}
uint32_t size = 0;
err = hsa_amd_memory_pool_get_info(pool, HSA_AMD_MEMORY_POOL_INFO_SIZE, &size);
RET_IF_HSA_ERR(err);
info->lds_size = size;
}
else if (segment == HSA_AMD_SEGMENT_GLOBAL) {
// Global memory
uint32_t global_flags = 0;
err = hsa_amd_memory_pool_get_info(pool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &global_flags);
RET_IF_HSA_ERR(err);
if (global_flags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_EXTENDED_SCOPE_FINE_GRAINED) {
if (info->global_size != 0) {
printErr("Found HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_EXTENDED_SCOPE_FINE_GRAINED twice!");
return HSA_STATUS_ERROR;
}
uint64_t size = 0;
err = hsa_amd_memory_pool_get_info(pool, HSA_AMD_MEMORY_POOL_INFO_SIZE, &size);
RET_IF_HSA_ERR(err);
info->global_size = size;
}
}
return HSA_STATUS_SUCCESS;
}
hsa_status_t agent_callback(hsa_agent_t agent, void *data) { hsa_status_t agent_callback(hsa_agent_t agent, void *data) {
struct agent_info* info = reinterpret_cast<struct agent_info *>(data); struct agent_info* info = reinterpret_cast<struct agent_info *>(data);
@@ -116,26 +62,6 @@ hsa_status_t agent_callback(hsa_agent_t agent, void *data) {
err = hsa_agent_get_info(agent, (hsa_agent_info_t) HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT, &info->compute_unit); err = hsa_agent_get_info(agent, (hsa_agent_info_t) HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT, &info->compute_unit);
RET_IF_HSA_ERR(err); RET_IF_HSA_ERR(err);
// According to the documentation, this is deprecated. But what should I be using then?
err = hsa_agent_get_info(agent, (hsa_agent_info_t) HSA_AMD_AGENT_INFO_MEMORY_WIDTH, &info->bus_width);
RET_IF_HSA_ERR(err);
err = hsa_agent_get_info(agent, (hsa_agent_info_t) HSA_AMD_AGENT_INFO_NUM_SHADER_ENGINES, &info->num_shader_engines);
RET_IF_HSA_ERR(err);
err = hsa_agent_get_info(agent, (hsa_agent_info_t) HSA_AMD_AGENT_INFO_NUM_SIMDS_PER_CU, &info->simds_per_cu);
RET_IF_HSA_ERR(err);
err = hsa_agent_get_info(agent, (hsa_agent_info_t) HSA_AMD_AGENT_INFO_NUM_XCC, &info->num_xcc);
RET_IF_HSA_ERR(err);
// We will check against zero to see if it was set beforehand.
info->global_size = 0;
info->lds_size = 0;
// This will fill global_size and lds_size.
err = hsa_amd_agent_iterate_memory_pools(agent, memory_pool_callback, data);
RET_IF_HSA_ERR(err);
} }
return HSA_STATUS_SUCCESS; return HSA_STATUS_SUCCESS;
@@ -145,26 +71,10 @@ struct topology_h* get_topology_info(struct agent_info info) {
struct topology_h* topo = (struct topology_h*) emalloc(sizeof(struct topology_h)); struct topology_h* topo = (struct topology_h*) emalloc(sizeof(struct topology_h));
topo->compute_units = info.compute_unit; topo->compute_units = info.compute_unit;
topo->num_shader_engines = info.num_shader_engines; // not printed at the moment
topo->simds_per_cu = info.simds_per_cu; // not printed at the moment
topo->num_xcc = info.num_xcc;
// Old GPUs (GCN I guess) might not have matrix cores.
// Not sure what would happen here?
topo->matrix_cores = topo->compute_units * topo->simds_per_cu;
return topo; return topo;
} }
struct memory* get_memory_info(struct gpu_info* gpu, struct agent_info info) {
struct memory* mem = (struct memory*) emalloc(sizeof(struct memory));
mem->bus_width = info.bus_width;
mem->lds_size = info.lds_size;
mem->size_bytes = info.global_size;
return mem;
}
struct gpu_info* get_gpu_info_hsa(int gpu_idx) { struct gpu_info* get_gpu_info_hsa(int gpu_idx) {
struct gpu_info* gpu = (struct gpu_info*) emalloc(sizeof(struct gpu_info)); struct gpu_info* gpu = (struct gpu_info*) emalloc(sizeof(struct gpu_info));
gpu->pci = NULL; gpu->pci = NULL;
@@ -208,7 +118,6 @@ struct gpu_info* get_gpu_info_hsa(int gpu_idx) {
gpu->name = (char *) emalloc(sizeof(char) * (strlen(info.device_mkt_name) + 1)); gpu->name = (char *) emalloc(sizeof(char) * (strlen(info.device_mkt_name) + 1));
strcpy(gpu->name, info.device_mkt_name); strcpy(gpu->name, info.device_mkt_name);
gpu->arch = get_uarch_from_hsa(gpu, info.gpu_name); gpu->arch = get_uarch_from_hsa(gpu, info.gpu_name);
gpu->mem = get_memory_info(gpu, info);
if (gpu->arch == NULL) { if (gpu->arch == NULL) {
return NULL; return NULL;
@@ -226,17 +135,3 @@ struct gpu_info* get_gpu_info_hsa(int gpu_idx) {
char* get_str_cu(struct gpu_info* gpu) { char* get_str_cu(struct gpu_info* gpu) {
return get_str_generic(gpu->topo_h->compute_units); return get_str_generic(gpu->topo_h->compute_units);
} }
char* get_str_xcds(struct gpu_info* gpu) {
// If there is a single XCD, then we dont want to
// print it.
if (gpu->topo_h->num_xcc == 1) {
return NULL;
}
return get_str_generic(gpu->topo_h->num_xcc);
}
char* get_str_matrix_cores(struct gpu_info* gpu) {
// TODO: Show XX (WMMA/MFMA)
return get_str_generic(gpu->topo_h->matrix_cores);
}

View File

@@ -5,7 +5,5 @@
struct gpu_info* get_gpu_info_hsa(int gpu_idx); struct gpu_info* get_gpu_info_hsa(int gpu_idx);
char* get_str_cu(struct gpu_info* gpu); char* get_str_cu(struct gpu_info* gpu);
char* get_str_xcds(struct gpu_info* gpu);
char* get_str_matrix_cores(struct gpu_info* gpu);
#endif #endif