4 Commits

Author SHA1 Message Date
Dr-Noob
fc7c46a389 Minor improvements 2025-10-16 07:23:50 +02:00
Dr-Noob
66387ab7a7 Fix 2025-10-15 08:46:05 +02:00
Dr-Noob
d24a737317 Fix 2025-10-15 08:43:40 +02:00
Dr-Noob
62e358a017 Supporting cases where rocm-cmake is not installed 2025-10-15 08:39:24 +02:00
13 changed files with 161 additions and 413 deletions

View File

@@ -10,10 +10,9 @@ set(CUDA_DIR "${SRC_DIR}/cuda")
set(HSA_DIR "${SRC_DIR}/hsa")
set(INTEL_DIR "${SRC_DIR}/intel")
# Make sure that at least one backend is enabled.
# It does not make sense that the user has not specified any backend.
if(NOT ENABLE_INTEL_BACKEND AND NOT ENABLE_CUDA_BACKEND AND NOT ENABLE_HSA_BACKEND)
message(FATAL_ERROR "No backend was enabled! Please enable at least one backend with -DENABLE_XXX_BACKEND")
# Enable Intel backend by default
if(NOT DEFINED ENABLE_INTEL_BACKEND)
set(ENABLE_INTEL_BACKEND true)
endif()
if(ENABLE_CUDA_BACKEND)
@@ -67,32 +66,9 @@ if(ENABLE_HSA_BACKEND)
endif()
endif()
set(GPUFECH_COMMON
${COMMON_DIR}/main.cpp
${COMMON_DIR}/args.cpp
${COMMON_DIR}/gpu.cpp
${COMMON_DIR}/global.cpp
${COMMON_DIR}/printer.cpp
${COMMON_DIR}/master.cpp
${COMMON_DIR}/uarch.cpp
)
set(GPUFETCH_LINK_TARGETS z)
if(NOT(ENABLE_HSA_BACKEND AND NOT ENABLE_CUDA_BACKEND AND NOT ENABLE_INTEL_BACKEND))
# Look for pciutils only if not building HSA only.
#
# This has the (intented) secondary effect that if only HSA backend is enabled
# by the user, but ROCm cannot be found, pciutils will still be compiled in
# order to show the list of GPUs available on the system, so that the user will
# get at least some feedback even if HSA is not found.
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_LIST_DIR}/cmake")
list(APPEND GPUFECH_COMMON ${COMMON_DIR}/pci.cpp ${COMMON_DIR}/sort.cpp)
list(APPEND GPUFETCH_LINK_TARGETS pci)
set(CMAKE_ENABLE_PCIUTILS ON)
find_package(PCIUTILS)
if(NOT ${PCIUTILS_FOUND})
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_LIST_DIR}/cmake")
find_package(PCIUTILS)
if(NOT ${PCIUTILS_FOUND})
message(STATUS "${BoldYellow}pciutils not found, downloading and building a local copy...${ColorReset}")
# Download and build pciutils
@@ -107,23 +83,18 @@ if(NOT(ENABLE_HSA_BACKEND AND NOT ENABLE_CUDA_BACKEND AND NOT ENABLE_INTEL_BACKE
include_directories(${PCIUTILS_INSTALL_LOCATION}/include)
link_directories(${PCIUTILS_INSTALL_LOCATION}/lib)
else()
else()
include_directories(${PCIUTILS_INCLUDE_DIR})
link_libraries(${PCIUTILS_LIBRARIES})
# Needed for linking libpci in FreeBSD
link_directories(/usr/local/lib/)
endif()
endif()
add_executable(gpufetch ${GPUFECH_COMMON})
add_executable(gpufetch ${COMMON_DIR}/main.cpp ${COMMON_DIR}/args.cpp ${COMMON_DIR}/gpu.cpp ${COMMON_DIR}/pci.cpp ${COMMON_DIR}/sort.cpp ${COMMON_DIR}/global.cpp ${COMMON_DIR}/printer.cpp ${COMMON_DIR}/master.cpp ${COMMON_DIR}/uarch.cpp)
set(SANITY_FLAGS -Wfloat-equal -Wshadow -Wpointer-arith -Wall -Wextra -pedantic -fstack-protector-all -pedantic)
target_compile_features(gpufetch PRIVATE cxx_std_11)
target_compile_options(gpufetch PRIVATE ${SANITY_FLAGS})
if (CMAKE_ENABLE_PCIUTILS)
target_compile_definitions(gpufetch PUBLIC BACKEND_USE_PCI)
endif()
if(ENABLE_INTEL_BACKEND)
target_compile_definitions(gpufetch PUBLIC BACKEND_INTEL)
@@ -185,7 +156,7 @@ if(ENABLE_HSA_BACKEND)
target_link_libraries(gpufetch hsa_backend)
endif()
target_link_libraries(gpufetch ${GPUFETCH_LINK_TARGETS})
target_link_libraries(gpufetch pci z)
install(TARGETS gpufetch DESTINATION bin)
if(NOT WIN32)

View File

@@ -1,24 +1,5 @@
#!/bin/bash
print_help() {
cat << EOF
Usage: $0 <backends> [build_type]
<backends> MANDATORY. Comma-separated list of
backends to enable.
Valid options: hsa, intel, cuda
Example: hsa,cuda
[build_type] OPTIONAL. Build type. Valid options:
debug, release (default: release)
Examples:
$0 hsa,intel debug
$0 cuda
$0 hsa,intel,cuda release
EOF
}
# gpufetch build script
set -e
@@ -26,79 +7,19 @@ rm -rf build/ gpufetch
mkdir build/
cd build/
if [ "$1" == "--help" ]
if [ "$1" == "debug" ]
then
echo "gpufetch build script"
echo
print_help
exit 0
fi
if [[ $# -lt 1 ]]; then
echo "ERROR: At least one backend must be specified."
echo
print_help
exit 1
fi
# Determine if last argument is build type
LAST_ARG="${!#}"
if [[ "$LAST_ARG" == "debug" || "$LAST_ARG" == "release" ]]; then
BUILD_TYPE="$LAST_ARG"
BACKEND_ARG="${1}"
BUILD_TYPE="Debug"
else
BUILD_TYPE="release"
BACKEND_ARG="${1}"
BUILD_TYPE="Release"
fi
# Split comma-separated backends into an array
IFS=',' read -r -a BACKENDS <<< "$BACKEND_ARG"
# Validate build type
if [[ "$BUILD_TYPE" != "debug" && "$BUILD_TYPE" != "release" ]]
then
echo "Error: Invalid build type '$BUILD_TYPE'."
echo "Valid options are: debug, release"
exit 1
fi
# From lower to upper case
CMAKE_FLAGS="-DCMAKE_BUILD_TYPE=${BUILD_TYPE^}"
# Validate backends
VALID_BACKENDS=("hsa" "intel" "cuda")
for BACKEND in "${BACKENDS[@]}"; do
case "$BACKEND" in
hsa)
CMAKE_FLAGS+=" -DENABLE_HSA_BACKEND=ON"
;;
intel)
CMAKE_FLAGS+=" -DENABLE_INTEL_BACKEND=ON"
;;
cuda)
CMAKE_FLAGS+=" -DENABLE_CUDA_BACKEND=ON"
;;
*)
echo "ERROR: Invalid backend '$BACKEND'."
echo "Valid options: ${VALID_BACKENDS[*]}"
exit 1
;;
esac
done
# You can also manually specify the compilation flags.
# If you need to, just run the cmake command directly
# instead of using this script.
#
# Here you will find some help:
#
# In case you have CUDA installed but it is not detected,
# - set CMAKE_CUDA_COMPILER to your nvcc binary:
# - set CMAKE_CUDA_COMPILER_TOOLKIT_ROOT to the CUDA root dir
# for example:
# cmake -DCMAKE_BUILD_TYPE=$BUILD_TYPE -DCMAKE_CUDA_COMPILER=/usr/local/cuda/bin/nvcc -DCMAKE_CUDA_COMPILER_TOOLKIT_ROOT=/usr/local/cuda/ ..
#
# In case you want to explicitely disable a backend, you can:
# Disable CUDA backend:
# cmake -DCMAKE_BUILD_TYPE=$BUILD_TYPE -DENABLE_CUDA_BACKEND=OFF ..
@@ -107,9 +28,7 @@ done
# Disable Intel backend:
# cmake -DCMAKE_BUILD_TYPE=$BUILD_TYPE -DENABLE_INTEL_BACKEND=OFF ..
echo "$0: Running cmake $CMAKE_FLAGS"
echo
cmake $CMAKE_FLAGS ..
cmake -DCMAKE_BUILD_TYPE=$BUILD_TYPE ..
os=$(uname)
if [ "$os" == 'Linux' ]; then

View File

@@ -101,17 +101,6 @@ char* get_str_bus_width(struct gpu_info* gpu) {
return string;
}
char* get_str_lds_size(struct gpu_info* gpu) {
// TODO: Show XX KB (XX MB Total) like in cpufetch
uint32_t size = 3+1+3+1;
assert(strlen(STRING_UNKNOWN)+1 <= size);
char* string = (char *) ecalloc(size, sizeof(char));
sprintf(string, "%d KB", gpu->mem->lds_size / 1024);
return string;
}
char* get_str_memory_clock(struct gpu_info* gpu) {
return get_freq_as_str_mhz(gpu->mem->freq);
}

View File

@@ -3,6 +3,8 @@
#include <cstdint>
#include "../cuda/pci.hpp"
#define UNKNOWN_FREQ -1
enum {
@@ -46,10 +48,6 @@ struct topology_c {
// HSA topology
struct topology_h {
int32_t compute_units;
int32_t num_shader_engines;
int32_t simds_per_cu;
int32_t num_xcc;
int32_t matrix_cores;
};
// Intel topology
@@ -65,7 +63,6 @@ struct memory {
int32_t bus_width;
int32_t freq;
int32_t clk_mul; // clock multiplier
int32_t lds_size; // HSA specific for now
};
struct gpu_info {
@@ -93,7 +90,6 @@ char* get_str_freq(struct gpu_info* gpu);
char* get_str_memory_size(struct gpu_info* gpu);
char* get_str_memory_type(struct gpu_info* gpu);
char* get_str_bus_width(struct gpu_info* gpu);
char* get_str_lds_size(struct gpu_info* gpu);
char* get_str_memory_clock(struct gpu_info* gpu);
char* get_str_l2(struct gpu_info* gpu);
char* get_str_peak_performance(struct gpu_info* gpu);

View File

@@ -8,10 +8,6 @@
#include "../cuda/cuda.hpp"
#include "../cuda/uarch.hpp"
#ifdef BACKEND_USE_PCI
#include "pci.hpp"
#endif
static const char* VERSION = "0.30";
void print_help(char *argv[]) {
@@ -83,12 +79,8 @@ int main(int argc, char* argv[]) {
}
if(get_num_gpus_available(list) == 0) {
#ifdef BACKEND_USE_PCI
printErr("No GPU was detected! Available GPUs are:");
print_gpus_list_pci();
#else
printErr("No GPU was detected!");
#endif
printf("Please, make sure that the appropiate backend is enabled:\n");
print_enabled_backends();
printf("Visit https://github.com/Dr-Noob/gpufetch#2-backends for more information\n");

View File

@@ -1,10 +1,7 @@
#include <cstdlib>
#include <cstdio>
#ifdef BACKEND_USE_PCI
#include "pci.hpp"
#endif
#include "pci.hpp"
#include "global.hpp"
#include "colors.hpp"
#include "master.hpp"
@@ -22,9 +19,7 @@ struct gpu_list {
struct gpu_list* get_gpu_list() {
int idx = 0;
#ifdef BACKEND_USE_PCI
struct pci_dev *devices = get_pci_devices_from_pciutils();
#endif
struct gpu_list* list = (struct gpu_list*) malloc(sizeof(struct gpu_list));
list->num_gpus = 0;
list->gpus = (struct gpu_info**) malloc(sizeof(struct info*) * MAX_GPUS);
@@ -45,7 +40,7 @@ struct gpu_list* get_gpu_list() {
bool valid = true;
while(valid) {
list->gpus[idx] = get_gpu_info_hsa(idx);
list->gpus[idx] = get_gpu_info_hsa(devices, idx);
if(list->gpus[idx] != NULL) idx++;
else valid = false;
}

View File

@@ -32,60 +32,64 @@
#define MAX_ATTRIBUTES 100
#define MAX_TERM_SIZE 1024
typedef struct {
int id;
const char *name;
const char *shortname;
} AttributeField;
// AttributeField IDs
// Used by
enum {
ATTRIBUTE_NAME, // ALL
ATTRIBUTE_CHIP, // ALL
ATTRIBUTE_UARCH, // ALL
ATTRIBUTE_TECHNOLOGY, // ALL
ATTRIBUTE_FREQUENCY, // ALL
ATTRIBUTE_PEAK, // ALL
ATTRIBUTE_COMPUTE_UNITS, // HSA
ATTRIBUTE_MATRIX_CORES, // HSA
ATTRIBUTE_XCDS, // HSA
ATTRIBUTE_LDS_SIZE, // HSA
ATTRIBUTE_STREAMINGMP, // CUDA
ATTRIBUTE_CORESPERMP, // CUDA
ATTRIBUTE_CUDA_CORES, // CUDA
ATTRIBUTE_TENSOR_CORES, // CUDA
ATTRIBUTE_L2, // CUDA
ATTRIBUTE_MEMORY, // CUDA,HSA
ATTRIBUTE_MEMORY_FREQ, // CUDA
ATTRIBUTE_BUS_WIDTH, // CUDA,HSA
ATTRIBUTE_PEAK_TENSOR, // CUDA
ATTRIBUTE_EUS, // Intel
ATTRIBUTE_GT, // Intel
ATTRIBUTE_NAME,
ATTRIBUTE_CHIP,
ATTRIBUTE_UARCH,
ATTRIBUTE_TECHNOLOGY,
ATTRIBUTE_GT,
ATTRIBUTE_FREQUENCY,
ATTRIBUTE_STREAMINGMP,
ATTRIBUTE_CORESPERMP,
ATTRIBUTE_CUDA_CORES,
ATTRIBUTE_TENSOR_CORES,
ATTRIBUTE_EUS,
ATTRIBUTE_L2,
ATTRIBUTE_MEMORY,
ATTRIBUTE_MEMORY_FREQ,
ATTRIBUTE_BUS_WIDTH,
ATTRIBUTE_PEAK,
ATTRIBUTE_PEAK_TENSOR,
};
static const AttributeField ATTRIBUTE_INFO[] = {
{ ATTRIBUTE_NAME, "Name:", "Name:" },
{ ATTRIBUTE_CHIP, "GPU processor:", "Processor:" },
{ ATTRIBUTE_UARCH, "Microarchitecture:", "uArch:" },
{ ATTRIBUTE_TECHNOLOGY, "Technology:", "Technology:" },
{ ATTRIBUTE_FREQUENCY, "Max Frequency:", "Max Freq.:" },
{ ATTRIBUTE_PEAK, "Peak Performance:", "Peak Perf.:" },
{ ATTRIBUTE_COMPUTE_UNITS, "Compute Units (CUs):", "CUs" },
{ ATTRIBUTE_MATRIX_CORES, "Matrix Cores:", "Matrix Cores:" },
{ ATTRIBUTE_XCDS, "XCDs:", "XCDs" },
{ ATTRIBUTE_LDS_SIZE, "LDS size:", "LDS:" },
{ ATTRIBUTE_STREAMINGMP, "SMs:", "SMs:" },
{ ATTRIBUTE_CORESPERMP, "Cores/SM:", "Cores/SM:" },
{ ATTRIBUTE_CUDA_CORES, "CUDA Cores:", "CUDA Cores:" },
{ ATTRIBUTE_TENSOR_CORES, "Tensor Cores:", "Tensor Cores:" },
{ ATTRIBUTE_L2, "L2 Size:", "L2 Size:" },
{ ATTRIBUTE_MEMORY, "Memory:", "Memory:" },
{ ATTRIBUTE_MEMORY_FREQ, "Memory frequency:", "Memory freq.:" },
{ ATTRIBUTE_BUS_WIDTH, "Bus width:", "Bus width:" },
{ ATTRIBUTE_PEAK_TENSOR, "Peak Performance (MMA):", "Peak Perf.(MMA):" },
{ ATTRIBUTE_EUS, "Execution Units:", "EUs:" },
{ ATTRIBUTE_GT, "Graphics Tier:", "GT:" },
static const char* ATTRIBUTE_FIELDS [] = {
"Name:",
"GPU processor:",
"Microarchitecture:",
"Technology:",
"Graphics Tier:",
"Max Frequency:",
"SMs:",
"Cores/SM:",
"CUDA Cores:",
"Tensor Cores:",
"Execution Units:",
"L2 Size:",
"Memory:",
"Memory frequency:",
"Bus width:",
"Peak Performance:",
"Peak Performance (MMA):",
};
static const char* ATTRIBUTE_FIELDS_SHORT [] = {
"Name:",
"Processor:",
"uArch:",
"Technology:",
"GT:",
"Max Freq.:",
"SMs:",
"Cores/SM:",
"CUDA Cores:",
"Tensor Cores:",
"EUs:",
"L2 Size:",
"Memory:",
"Memory freq.:",
"Bus width:",
"Peak Perf.:",
"Peak Perf.(MMA):",
};
struct terminal {
@@ -203,6 +207,8 @@ bool ascii_fits_screen(int termw, struct ascii_logo logo, int lf) {
void replace_bgbyfg_color(struct ascii_logo* logo) {
// Replace background by foreground color
for(int i=0; i < 2; i++) {
if(logo->color_ascii[i] == NULL) break;
if(strcmp(logo->color_ascii[i], C_BG_BLACK) == 0) strcpy(logo->color_ascii[i], C_FG_BLACK);
else if(strcmp(logo->color_ascii[i], C_BG_RED) == 0) strcpy(logo->color_ascii[i], C_FG_RED);
else if(strcmp(logo->color_ascii[i], C_BG_GREEN) == 0) strcpy(logo->color_ascii[i], C_FG_GREEN);
@@ -270,14 +276,13 @@ void choose_ascii_art(struct ascii* art, struct color** cs, struct terminal* ter
}
}
uint32_t longest_attribute_length(struct ascii* art, bool use_short) {
uint32_t longest_attribute_length(struct ascii* art, const char** attribute_fields) {
uint32_t max = 0;
uint64_t len = 0;
for(uint32_t i=0; i < art->n_attributes_set; i++) {
if(art->attributes[i]->value != NULL) {
const char* str = use_short ? ATTRIBUTE_INFO[art->attributes[i]->type].shortname : ATTRIBUTE_INFO[art->attributes[i]->type].name;
len = strlen(str);
len = strlen(attribute_fields[art->attributes[i]->type]);
if(len > max) max = len;
}
}
@@ -301,7 +306,7 @@ uint32_t longest_field_length(struct ascii* art, int la) {
return max;
}
void print_ascii_generic(struct ascii* art, uint32_t la, int32_t text_space, bool use_short) {
void print_ascii_generic(struct ascii* art, uint32_t la, int32_t text_space, const char** attribute_fields) {
struct ascii_logo* logo = art->art;
int attr_to_print = 0;
int attr_type;
@@ -345,13 +350,11 @@ void print_ascii_generic(struct ascii* art, uint32_t la, int32_t text_space, boo
attr_value = art->attributes[attr_to_print]->value;
attr_to_print++;
const char* attr_str = use_short ? ATTRIBUTE_INFO[attr_type].shortname : ATTRIBUTE_INFO[attr_type].name;
space_right = 1 + (la - strlen(attr_str));
space_right = 1 + (la - strlen(attribute_fields[attr_type]));
current_space = max(0, text_space);
printf("%s%.*s%s", logo->color_text[0], current_space, attr_str, art->reset);
current_space = max(0, current_space - (int) strlen(attr_str));
printf("%s%.*s%s", logo->color_text[0], current_space, attribute_fields[attr_type], art->reset);
current_space = max(0, current_space - (int) strlen(attribute_fields[attr_type]));
printf("%*s", min(current_space, space_right), "");
current_space = max(0, current_space - min(current_space, space_right));
printf("%s%.*s%s", logo->color_text[1], current_space, attr_value, art->reset);
@@ -385,19 +388,19 @@ bool print_gpufetch_intel(struct gpu_info* gpu, STYLE s, struct color** cs, stru
setAttribute(art, ATTRIBUTE_EUS, eus);
setAttribute(art, ATTRIBUTE_PEAK, pp);
bool use_short = false;
uint32_t longest_attribute = longest_attribute_length(art, use_short);
const char** attribute_fields = ATTRIBUTE_FIELDS;
uint32_t longest_attribute = longest_attribute_length(art, attribute_fields);
uint32_t longest_field = longest_field_length(art, longest_attribute);
choose_ascii_art(art, cs, term, longest_field);
if(!ascii_fits_screen(term->w, *art->art, longest_field)) {
// Despite of choosing the smallest logo, the output does not fit
// Choose the shorter field names and recalculate the longest attr
use_short = true;
longest_attribute = longest_attribute_length(art, use_short);
attribute_fields = ATTRIBUTE_FIELDS_SHORT;
longest_attribute = longest_attribute_length(art, attribute_fields);
}
print_ascii_generic(art, longest_attribute, term->w - art->art->width, use_short);
print_ascii_generic(art, longest_attribute, term->w - art->art->width, attribute_fields);
return true;
}
@@ -454,19 +457,19 @@ bool print_gpufetch_cuda(struct gpu_info* gpu, STYLE s, struct color** cs, struc
setAttribute(art, ATTRIBUTE_PEAK_TENSOR, pp_tensor);
}
bool use_short = false;
uint32_t longest_attribute = longest_attribute_length(art, use_short);
const char** attribute_fields = ATTRIBUTE_FIELDS;
uint32_t longest_attribute = longest_attribute_length(art, attribute_fields);
uint32_t longest_field = longest_field_length(art, longest_attribute);
choose_ascii_art(art, cs, term, longest_field);
if(!ascii_fits_screen(term->w, *art->art, longest_field)) {
// Despite of choosing the smallest logo, the output does not fit
// Choose the shorter field names and recalculate the longest attr
use_short = true;
longest_attribute = longest_attribute_length(art, use_short);
attribute_fields = ATTRIBUTE_FIELDS_SHORT;
longest_attribute = longest_attribute_length(art, attribute_fields);
}
print_ascii_generic(art, longest_attribute, term->w - art->art->width, use_short);
print_ascii_generic(art, longest_attribute, term->w - art->art->width, attribute_fields);
free(manufacturing_process);
free(max_frequency);
@@ -491,13 +494,8 @@ bool print_gpufetch_amd(struct gpu_info* gpu, STYLE s, struct color** cs, struct
char* gpu_chip = get_str_chip(gpu->arch);
char* uarch = get_str_uarch_hsa(gpu->arch);
char* manufacturing_process = get_str_process(gpu->arch);
char* cus = get_str_cu(gpu);
char* matrix_cores = get_str_matrix_cores(gpu);
char* xcds = get_str_xcds(gpu);
char* sms = get_str_cu(gpu);
char* max_frequency = get_str_freq(gpu);
char* bus_width = get_str_bus_width(gpu);
char* mem_size = get_str_memory_size(gpu);
char* lds_size = get_str_lds_size(gpu);
setAttribute(art, ATTRIBUTE_NAME, gpu_name);
if (gpu_chip != NULL) {
@@ -506,28 +504,21 @@ bool print_gpufetch_amd(struct gpu_info* gpu, STYLE s, struct color** cs, struct
setAttribute(art, ATTRIBUTE_UARCH, uarch);
setAttribute(art, ATTRIBUTE_TECHNOLOGY, manufacturing_process);
setAttribute(art, ATTRIBUTE_FREQUENCY, max_frequency);
setAttribute(art, ATTRIBUTE_COMPUTE_UNITS, cus);
setAttribute(art, ATTRIBUTE_MATRIX_CORES, matrix_cores);
if (xcds != NULL) {
setAttribute(art, ATTRIBUTE_XCDS, xcds);
}
setAttribute(art, ATTRIBUTE_LDS_SIZE, lds_size);
setAttribute(art, ATTRIBUTE_MEMORY, mem_size);
setAttribute(art, ATTRIBUTE_BUS_WIDTH, bus_width);
setAttribute(art, ATTRIBUTE_STREAMINGMP, sms);
bool use_short = false;
uint32_t longest_attribute = longest_attribute_length(art, use_short);
const char** attribute_fields = ATTRIBUTE_FIELDS;
uint32_t longest_attribute = longest_attribute_length(art, attribute_fields);
uint32_t longest_field = longest_field_length(art, longest_attribute);
choose_ascii_art(art, cs, term, longest_field);
if(!ascii_fits_screen(term->w, *art->art, longest_field)) {
// Despite of choosing the smallest logo, the output does not fit
// Choose the shorter field names and recalculate the longest attr
use_short = true;
longest_attribute = longest_attribute_length(art, use_short);
attribute_fields = ATTRIBUTE_FIELDS_SHORT;
longest_attribute = longest_attribute_length(art, attribute_fields);
}
print_ascii_generic(art, longest_attribute, term->w - art->art->width, use_short);
print_ascii_generic(art, longest_attribute, term->w - art->art->width, attribute_fields);
free(art->attributes);
free(art);

View File

@@ -1,6 +1,3 @@
// patched cuda.cpp for cuda13 by cloudy
#include <cuda_runtime.h>
#include <cstring>
#include <cstdlib>
@@ -8,8 +5,8 @@
#include "cuda.hpp"
#include "uarch.hpp"
#include "pci.hpp"
#include "gpufetch_helper_cuda.hpp"
#include "../common/pci.hpp"
#include "../common/global.hpp"
#include "../common/uarch.hpp"
@@ -17,22 +14,29 @@ bool print_gpu_cuda(struct gpu_info* gpu) {
char* cc = get_str_cc(gpu->arch);
printf("%s (Compute Capability %s)\n", gpu->name, cc);
free(cc);
return true;
}
struct cache* get_cache_info(cudaDeviceProp prop) {
struct cache* cach = (struct cache*) emalloc(sizeof(struct cache));
cach->L2 = (struct cach*) emalloc(sizeof(struct cach));
cach->L2->size = prop.l2CacheSize;
cach->L2->num_caches = 1;
cach->L2->exists = true;
return cach;
}
int get_tensor_cores(struct uarch* arch, int sm, int major) {
if(major == 7) {
if (is_chip_TU116(arch))
// TU116 does not have tensor cores!
// https://www.anandtech.com/show/13973/nvidia-gtx-1660-ti-review-feat-evga-xc-gaming/2
if(arch->chip == CHIP_TU116 || arch->chip == CHIP_TU116BM ||
arch->chip == CHIP_TU116GL || arch->chip == CHIP_TU116M) {
return 0;
}
return sm * 8;
}
else if(major == 8) return sm * 4;
@@ -41,57 +45,57 @@ int get_tensor_cores(struct uarch* arch, int sm, int major) {
struct topology_c* get_topology_info(struct uarch* arch, cudaDeviceProp prop) {
struct topology_c* topo = (struct topology_c*) emalloc(sizeof(struct topology_c));
topo->streaming_mp = prop.multiProcessorCount;
topo->cores_per_mp = _ConvertSMVer2Cores(prop.major, prop.minor);
topo->cuda_cores = topo->streaming_mp * topo->cores_per_mp;
topo->tensor_cores = get_tensor_cores(arch, topo->streaming_mp, prop.major);
return topo;
}
int32_t guess_clock_multipilier(struct gpu_info* gpu, struct memory* mem) {
// Guess clock multiplier
int32_t clk_mul = 1;
int32_t clk8 = abs((mem->freq/8) - gpu->freq);
int32_t clk4 = abs((mem->freq/4) - gpu->freq);
int32_t clk2 = abs((mem->freq/2) - gpu->freq);
int32_t clk1 = abs((mem->freq/1) - gpu->freq);
int32_t min = mem->freq;
if(clkm_possible_for_uarch(8, gpu->arch) && min > clk8) { clk_mul = 8; min = clk8; }
if(clkm_possible_for_uarch(4, gpu->arch) && min > clk4) { clk_mul = 4; min = clk4; }
if(clkm_possible_for_uarch(2, gpu->arch) && min > clk2) { clk_mul = 2; min = clk2; }
if(clkm_possible_for_uarch(1, gpu->arch) && min > clk1) { clk_mul = 1; min = clk1; }
return clk_mul;
}
struct memory* get_memory_info(struct gpu_info* gpu, cudaDeviceProp prop) {
struct memory* mem = (struct memory*) emalloc(sizeof(struct memory));
int val = 0;
mem->size_bytes = (unsigned long long) prop.totalGlobalMem;
if (cudaDeviceGetAttribute(&val, cudaDevAttrMemoryClockRate, gpu->idx) == cudaSuccess) {
if (val > 1000000)
mem->freq = (float)val / 1000000.0f;
else
mem->freq = (float)val * 0.001f;
} else {
mem->freq = 0.0f;
}
mem->freq = prop.memoryClockRate * 0.001f;
mem->bus_width = prop.memoryBusWidth;
mem->clk_mul = guess_clock_multipilier(gpu, mem);
mem->type = guess_memtype_from_cmul_and_uarch(mem->clk_mul, gpu->arch);
if (mem->clk_mul > 0)
// Fix frequency returned from CUDA to show real frequency
mem->freq = mem->freq / mem->clk_mul;
return mem;
}
// Compute peak performance when using CUDA cores
int64_t get_peak_performance_cuda(struct gpu_info* gpu) {
return gpu->freq * 1000000 * gpu->topo_c->cuda_cores * 2;
}
// Compute peak performance when using tensor cores
int64_t get_peak_performance_tcu(cudaDeviceProp prop, struct gpu_info* gpu) {
// Volta / Turing tensor cores performs 4x4x4 FP16 matrix multiplication
// Ampere tensor cores performs 8x4x8 FP16 matrix multiplicacion
if(prop.major == 7) return gpu->freq * 1000000 * 4 * 4 * 4 * 2 * gpu->topo_c->tensor_cores;
else if(prop.major == 8) return gpu->freq * 1000000 * 8 * 4 * 8 * 2 * gpu->topo_c->tensor_cores;
else return 0;
@@ -113,7 +117,8 @@ struct gpu_info* get_gpu_info_cuda(struct pci_dev *devices, int gpu_idx) {
}
int num_gpus = -1;
cudaError_t err = cudaGetDeviceCount(&num_gpus);
cudaError_t err = cudaSuccess;
err = cudaGetDeviceCount(&num_gpus);
if(gpu_idx == 0) {
printf("\r%*c\r", (int) strlen(CUDA_DRIVER_START_WARNING), ' ');
@@ -131,6 +136,7 @@ struct gpu_info* get_gpu_info_cuda(struct pci_dev *devices, int gpu_idx) {
}
if(gpu->idx+1 > num_gpus) {
// Master is trying to query an invalid GPU
return NULL;
}
@@ -140,25 +146,15 @@ struct gpu_info* get_gpu_info_cuda(struct pci_dev *devices, int gpu_idx) {
return NULL;
}
int core_clk = 0;
if (cudaDeviceGetAttribute(&core_clk, cudaDevAttrClockRate, gpu->idx) == cudaSuccess) {
if (core_clk > 1000000)
gpu->freq = core_clk / 1000000.0f;
else
gpu->freq = core_clk * 0.001f;
} else {
gpu->freq = 0.0f;
}
gpu->freq = deviceProp.clockRate * 1e-3f;
gpu->vendor = GPU_VENDOR_NVIDIA;
gpu->name = (char *) emalloc(strlen(deviceProp.name) + 1);
gpu->name = (char *) emalloc(sizeof(char) * (strlen(deviceProp.name) + 1));
strcpy(gpu->name, deviceProp.name);
if((gpu->pci = get_pci_from_pciutils(devices, PCI_VENDOR_ID_NVIDIA, gpu_idx)) == NULL) {
printErr("Unable to find a valid device for vendor id 0x%.4X using pciutils", PCI_VENDOR_ID_NVIDIA);
return NULL;
}
gpu->arch = get_uarch_from_cuda(gpu);
gpu->cach = get_cache_info(deviceProp);
gpu->mem = get_memory_info(gpu, deviceProp);
@@ -169,7 +165,19 @@ struct gpu_info* get_gpu_info_cuda(struct pci_dev *devices, int gpu_idx) {
return gpu;
}
char* get_str_sm(struct gpu_info* gpu) { return get_str_generic(gpu->topo_c->streaming_mp); }
char* get_str_cores_sm(struct gpu_info* gpu) { return get_str_generic(gpu->topo_c->cores_per_mp); }
char* get_str_cuda_cores(struct gpu_info* gpu) { return get_str_generic(gpu->topo_c->cuda_cores); }
char* get_str_tensor_cores(struct gpu_info* gpu) { return get_str_generic(gpu->topo_c->tensor_cores); }
char* get_str_sm(struct gpu_info* gpu) {
return get_str_generic(gpu->topo_c->streaming_mp);
}
char* get_str_cores_sm(struct gpu_info* gpu) {
return get_str_generic(gpu->topo_c->cores_per_mp);
}
char* get_str_cuda_cores(struct gpu_info* gpu) {
return get_str_generic(gpu->topo_c->cuda_cores);
}
char* get_str_tensor_cores(struct gpu_info* gpu) {
return get_str_generic(gpu->topo_c->tensor_cores);
}

View File

@@ -8,7 +8,6 @@
#include "../common/uarch.hpp"
#include "../common/global.hpp"
#include "../common/gpu.hpp"
#include "pci.hpp"
#include "chips.hpp"
// Any clock multiplier
@@ -362,8 +361,3 @@ void free_uarch_struct(struct uarch* arch) {
free(arch->chip_str);
free(arch);
}
bool is_chip_TU116(struct uarch* arch) {
return arch->chip == CHIP_TU116 || arch->chip == CHIP_TU116BM ||
arch->chip == CHIP_TU116GL || arch->chip == CHIP_TU116M;
}

View File

@@ -13,6 +13,5 @@ char* get_str_cc(struct uarch* arch);
char* get_str_chip(struct uarch* arch);
char* get_str_process(struct uarch* arch);
void free_uarch_struct(struct uarch* arch);
bool is_chip_TU116(struct uarch* arch);
#endif

View File

@@ -13,6 +13,7 @@
#include "hsa.hpp"
#include "uarch.hpp"
#include "../common/pci.hpp"
#include "../common/global.hpp"
#include "../common/uarch.hpp"
@@ -22,16 +23,7 @@ struct agent_info {
char vendor_name[64];
char device_mkt_name[64];
uint32_t max_clock_freq;
// Memory
uint32_t bus_width;
uint32_t lds_size;
uint64_t global_size;
// Topology
uint32_t compute_unit;
uint32_t num_shader_engines;
uint32_t simds_per_cu;
uint32_t num_xcc; // Acccelerator Complex Dies (XCDs)
uint32_t matrix_cores; // Cores with WMMA/MFMA capabilities
};
#define RET_IF_HSA_ERR(err) { \
@@ -49,51 +41,6 @@ struct agent_info {
} \
}
hsa_status_t memory_pool_callback(hsa_amd_memory_pool_t pool, void* data) {
struct agent_info* info = reinterpret_cast<struct agent_info *>(data);
hsa_amd_segment_t segment;
hsa_status_t err = hsa_amd_memory_pool_get_info(pool, HSA_AMD_MEMORY_POOL_INFO_SEGMENT, &segment);
RET_IF_HSA_ERR(err);
if (segment == HSA_AMD_SEGMENT_GROUP) {
// LDS memory
// We want to make sure that this memory pool is not repeated.
if (info->lds_size != 0) {
printErr("Found HSA_AMD_SEGMENT_GROUP twice!");
return HSA_STATUS_ERROR;
}
uint32_t size = 0;
err = hsa_amd_memory_pool_get_info(pool, HSA_AMD_MEMORY_POOL_INFO_SIZE, &size);
RET_IF_HSA_ERR(err);
info->lds_size = size;
}
else if (segment == HSA_AMD_SEGMENT_GLOBAL) {
// Global memory
uint32_t global_flags = 0;
err = hsa_amd_memory_pool_get_info(pool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &global_flags);
RET_IF_HSA_ERR(err);
if (global_flags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_EXTENDED_SCOPE_FINE_GRAINED) {
if (info->global_size != 0) {
printErr("Found HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_EXTENDED_SCOPE_FINE_GRAINED twice!");
return HSA_STATUS_ERROR;
}
uint64_t size = 0;
err = hsa_amd_memory_pool_get_info(pool, HSA_AMD_MEMORY_POOL_INFO_SIZE, &size);
RET_IF_HSA_ERR(err);
info->global_size = size;
}
}
return HSA_STATUS_SUCCESS;
}
hsa_status_t agent_callback(hsa_agent_t agent, void *data) {
struct agent_info* info = reinterpret_cast<struct agent_info *>(data);
@@ -116,26 +63,6 @@ hsa_status_t agent_callback(hsa_agent_t agent, void *data) {
err = hsa_agent_get_info(agent, (hsa_agent_info_t) HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT, &info->compute_unit);
RET_IF_HSA_ERR(err);
// According to the documentation, this is deprecated. But what should I be using then?
err = hsa_agent_get_info(agent, (hsa_agent_info_t) HSA_AMD_AGENT_INFO_MEMORY_WIDTH, &info->bus_width);
RET_IF_HSA_ERR(err);
err = hsa_agent_get_info(agent, (hsa_agent_info_t) HSA_AMD_AGENT_INFO_NUM_SHADER_ENGINES, &info->num_shader_engines);
RET_IF_HSA_ERR(err);
err = hsa_agent_get_info(agent, (hsa_agent_info_t) HSA_AMD_AGENT_INFO_NUM_SIMDS_PER_CU, &info->simds_per_cu);
RET_IF_HSA_ERR(err);
err = hsa_agent_get_info(agent, (hsa_agent_info_t) HSA_AMD_AGENT_INFO_NUM_XCC, &info->num_xcc);
RET_IF_HSA_ERR(err);
// We will check against zero to see if it was set beforehand.
info->global_size = 0;
info->lds_size = 0;
// This will fill global_size and lds_size.
err = hsa_amd_agent_iterate_memory_pools(agent, memory_pool_callback, data);
RET_IF_HSA_ERR(err);
}
return HSA_STATUS_SUCCESS;
@@ -145,27 +72,11 @@ struct topology_h* get_topology_info(struct agent_info info) {
struct topology_h* topo = (struct topology_h*) emalloc(sizeof(struct topology_h));
topo->compute_units = info.compute_unit;
topo->num_shader_engines = info.num_shader_engines; // not printed at the moment
topo->simds_per_cu = info.simds_per_cu; // not printed at the moment
topo->num_xcc = info.num_xcc;
// Old GPUs (GCN I guess) might not have matrix cores.
// Not sure what would happen here?
topo->matrix_cores = topo->compute_units * topo->simds_per_cu;
return topo;
}
struct memory* get_memory_info(struct gpu_info* gpu, struct agent_info info) {
struct memory* mem = (struct memory*) emalloc(sizeof(struct memory));
mem->bus_width = info.bus_width;
mem->lds_size = info.lds_size;
mem->size_bytes = info.global_size;
return mem;
}
struct gpu_info* get_gpu_info_hsa(int gpu_idx) {
struct gpu_info* get_gpu_info_hsa(struct pci_dev *devices, int gpu_idx) {
struct gpu_info* gpu = (struct gpu_info*) emalloc(sizeof(struct gpu_info));
gpu->pci = NULL;
gpu->idx = gpu_idx;
@@ -208,7 +119,6 @@ struct gpu_info* get_gpu_info_hsa(int gpu_idx) {
gpu->name = (char *) emalloc(sizeof(char) * (strlen(info.device_mkt_name) + 1));
strcpy(gpu->name, info.device_mkt_name);
gpu->arch = get_uarch_from_hsa(gpu, info.gpu_name);
gpu->mem = get_memory_info(gpu, info);
if (gpu->arch == NULL) {
return NULL;
@@ -226,17 +136,3 @@ struct gpu_info* get_gpu_info_hsa(int gpu_idx) {
char* get_str_cu(struct gpu_info* gpu) {
return get_str_generic(gpu->topo_h->compute_units);
}
char* get_str_xcds(struct gpu_info* gpu) {
// If there is a single XCD, then we dont want to
// print it.
if (gpu->topo_h->num_xcc == 1) {
return NULL;
}
return get_str_generic(gpu->topo_h->num_xcc);
}
char* get_str_matrix_cores(struct gpu_info* gpu) {
// TODO: Show XX (WMMA/MFMA)
return get_str_generic(gpu->topo_h->matrix_cores);
}

View File

@@ -3,9 +3,7 @@
#include "../common/gpu.hpp"
struct gpu_info* get_gpu_info_hsa(int gpu_idx);
struct gpu_info* get_gpu_info_hsa(struct pci_dev *devices, int gpu_idx);
char* get_str_cu(struct gpu_info* gpu);
char* get_str_xcds(struct gpu_info* gpu);
char* get_str_matrix_cores(struct gpu_info* gpu);
#endif

View File

@@ -127,7 +127,7 @@ enum {
#define CHECK_UARCH_START if (false) {}
#define CHECK_UARCH(arch, chip_, str, uarch, process) \
else if (arch->chip == chip_) fill_uarch(arch, str, uarch, process);
#define CHECK_UARCH_END else { if(arch->chip != CHIP_UNKNOWN_HSA) printBug("map_chip_to_uarch_hsa: Unknown chip id: %d", arch->chip); fill_uarch(arch, STRING_UNKNOWN, UARCH_UNKNOWN, UNK); }
#define CHECK_UARCH_END else { if(arch->chip != CHIP_UNKNOWN_CUDA) printBug("map_chip_to_uarch_hsa: Unknown chip id: %d", arch->chip); fill_uarch(arch, STRING_UNKNOWN, UARCH_UNKNOWN, UNK); }
void fill_uarch(struct uarch* arch, char const *str, MICROARCH u, uint32_t process) {
arch->chip_str = (char *) emalloc(sizeof(char) * (strlen(str)+1));